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ERROR ANALYSIS OF BINARY RATE MULTIPLIER
by George J. Moshos

Lewis Research Center

SUMMARY

The binary rate multiplier is studied as a means of achieving approximate
multiplication. The difference between the actual and desired output 1s defined
as the error of the binary rate multiplier, and closed formulas are obtained
for expressing this error in explicit form depending on the starting conditions
of the binary rate multiplier counter. As a result of analyzing these error
formulas, error bounds are obtained.

INTRODUCTION

An integral part of many special purpose digital computers used for real
time control is the binary rate multiplier (BRM) (e.g., refs. 1 to 4). In
these applications this unit is used as a means of scaling down a pulse stream
to some specified fraction. A logic diagram of a BRM, which is built out of
the standard logic elements shown in figure 1, is shown in figure 2(a). The
NOR element shown in figure 1(a) may have various number of inputs. The par-
allel lines shown on one of the inputs of figure 1(c) are included to indicate
that the AND circuit is intended to act as a pulse gate dependent on the level
setting of the other line. The following brief description explains the opera-
tions on the BRM.

The input pulse stream is applied directly to the binary counter whose value
is denoted by XuXp.j - « « Xpx]. BEach flip-flop of the counter is operated as
a trigger. For every two input pulses to a trigger, two output pulses are pro-
duced; one pulse when the flip-flop makes a O to 1 transition, called an
o pulse, and one when the flip-flop makes a 1 to O transition, called a B pulse.
The B pulse is used to trigger the next stage of the counter. The o pulses are
gated through AND gates and mixed through a NOR element to produce the desired
fraction of the input pulses. This simple mixing technique may be used because
the o pulses from the various stages are separated in time from each other.

This timing factor is shown in figure 2(b).

This unit may be used to achieve approximate multiplication. In particu-
lar, if XAx 1is the number of input pulses and y is a binary number less than
1, Az, the number of output pulses, may be stated quantitatively as

bz =y Ix (1)
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Figure 1. - Logic elements.
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Figure 2. - Binary rate multiplier.

The difference between the actual output of the BRM and Az, as given by equa-

tion (1), is defined as the error of the unit. In this report, the formulation
of error is explicitly given and studied. The analysis of the BRM is begun by

deriving the approximate relation shown in equation (1).

BINARY RATE MULTIPLIER

The quantitative relation of a BRM may be expressed as follows: If 24x
is the number of input pulses, the number of output pulses produced by the kth
stage of the counter is Ax . 2-K.  mThig multiplicative relation will remain
valid over any interval for which XAx 1is a multiple of 2k pulses. If y_x 1is
the level setting of the kth stage AND gate, the number of output pulses that



may be gated through this stage will be y.x &Xx - 27k, gince the output pulses
from the various stages are simply mixed, the number of output pulses 24z of
an n-stage BRM over any interval &x, which is a multiple of 28! pulses, will
be the sum of all the pulses gated through all the stages. This output is

n .
Lo = N Y yog2”t (2)
i=1
n .
The quantity y = D, ¥y.i2™* 1is a binary number. Therefore, equation (2) may
i=1
be written as
Nz =y I
where the range of y is
0<y<l-2m (3)

in steps of 2-1,

If y is constant over a /x interval of 2B pulses, the output given
by equation (1) is exact. If y is constant over a Ax interval of less
than 2% pulses, however, this multiplicative relation may not be valid. In
this latter case, the actual output depends not only on the values of y and
Nx but also on the starting value of the BRM counter. If the output from a
machine, whose BRM counter starting value is xg, 1s denoted by Azxs, it can

be shown that the average output over all of the 2% possible machines is also
given by equation (1). This can be demonstrated as follows: If Az 1is the
average output over all these machines, Az 1is, by definition,

2n—l
=%,
— Xo=0
Noo=_S (4)
zn
Zn"l
The sum EE ;Azxs given by equation (4) is the total pulse output over the
X =
s

2% gifferent possible machines when each machine receives Ax input pulses

and its AND gates are set to the value y. It will be observed that the

o transitions produced by these 2B wmachines are the same as the ones produced
by a single machine with 2 Ax  successive input pulses. TFor example, the a
transition ending with counter value x 1is attained &x times (once by each
of the /Mx machines whose starting value is prior to x in the counting se-
quence) of the 2P machines used in the average and also XAx times when 20 Ax
successive input pulses are applied to a single machine (since each counter
value is traversed Ax times in this case). Therefore, the total pulse output
over all the 21 possible machines with each receiving ZAx input pulses is
equal to the pulse output of a single machine receiving 2B Ax input pulses.
In this latter case the pulse output is also given by equation (1) since the
input pulse interval is a multiple of 2B pulses. Therefore,
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) The error for the BRM may be
18 defined as the actual output
minus y &x (i.e., the value pre-
dicted by eq. (1)). Since the
actual output changes only when
14 the input pulses arrive, it is
38 only necessary to consider the
error at these discrete times.
For example, figure 3 gives the

-718

-5/8
output for a three-stage BRM to-
0 2 2 6 8 gether with the values predicted
BRM counter vafue by equation (}) when the BRM
. N Hing f . 101 counter starting value is zero
Figure 3. - Muitiplication error resulting from y =. 101, and y = .101. The difference

between these two curves 1s the
defined error. Yet, in discussing error, the error value will be given only
when the abscissa is discrete values such as O, 1, 2, etc. (which correspond to
the BRM counter values). Moreover, it will be observed that when an output
pulse is produced, the error may change by one quanta. Therefore, it is neces-
sary to distinguish between the error immediately before the output pulse and
the error immedistely after the output pulse. When the BRM counter starting
value is zero, these two values of the error will be denoted by F and E,
respectively. When the BRM counter starting value is arbitrary, the starting
value must also enter into the error formula as a parameter. The errors will
be denoted prior to and after the arrival of the output pulse as H and G,
respectively. It will be noted that the error defined this way makes E a
special case of G, and F a special case of H. Nevertheless, this distinc-
tion is maintained, since it is convenient for our subsequent discussion.

Starting the BRM counter with zero gives the definition of the error E
as the actual output after the output pulses are generated, minus y &x. This
difference, when only one stage of an n-stage BRM is gated by ¥y, can be ex-
pressed systematically in tabular form as shown in table I.



TABIE I. ~ MULTIPLICATION ERROR E OF BRM WHEN ONE STAGE IS GATED

y_l =1 y_z = 1 ¥.3 = 1 y—k = 1
X7 E szl B X3X2Xl E KpeXpeq o ¢ o XSXZXJ_ E
o | o i{oo 0 |ooo o|loo ...000 0
1 |1/2|lo1 |-1/4|0oo01 {-1/8|l00 ...001 -1/2k
10 | 2/ajo1o0 |-2/8l00 . ..010 -z /2k
11 | 1/ejo11 |-3/8 . .
100 4/8 . .
101 | 3/8 . .
110 | g/8jo1 . 111 |- (21 a)/ek
111 | 18|10 . 000 1/2
10 . 001 (k=1 _ 1)/2k
11 ...111 1/2%

An inspection of this table shows that the error associated with the varilous
stages of a BRM may be expressed more concisely in algebraic form as shown in
table IT.

TABLE II. - MULTIPLICATION ERROR E

IN ALGEBRAIC FORM

Stage E
1 _(xq/2)
2 z_%(x%/z - x1/4)
3 y_s(x3/2 - X2/4: - X]/B)

.

Kk y:k(xk/z - x g/t - o . .= x1/2K)

For an arbitrary value of ¥, the value of E is the linear combination
of the values shown in table II. This bilinear form is shown in equation (7)
for an n-stage BRM. The element subscripts of the Boolean vectors x and y
(i.e., vectors whose elements are O or 1), which are shown in this eguation,
correspond to the stage numbers of the BRM shown in figure 1:

E = (x1,% « « « Xp) . (7)



i 1 1 _1 1 1
2 4 8 16 on-1 on
0 S | .. 1 1
2 4 8 on-2 on-1
; ) i 1 ) ) .
2 4
. . 1
M = 2 (8)
1 1 1
2 4 8
1 1
2 4
1
0 . . . 0 5

In the formulation of E, the maximum values of the output of the BRM were
reflected at the points of discontinuities. It will be observed that just
prior to these points the error is one quanta less than that shown by E. A
formulation of F, in which the minimum values are reflected at the points of
discontinuities, can be obtained in a manner similar to that for obtaining E.
The quantity F, when only one stage of an n-stage BRM is gated by vy, is
shown in tabular form in table III (only a few cases are exhibited).

TABLE ITI. - MULTIPLICATION ERROR F WIEN

ONLY ONE STAGE IS GATED

yq =1 yo=1 y.z =1

Ci| % F | CoCp| %pXq F | CzCCq | xzxpXq F
o |o o|loo]oo 0 |000 |0OO0O 0
1|1 ]-1/2|11]01 |-1/4{111 {001 |-1/8
10|10 |-2/4{110 |010 |-2/8

o111 1/4/101 {011 |-3/8

100 |[100 |-4/8

011 (101 3/8

010 [110 | 2/8

00l |111 1/8




Comparing table III with table I shows that the values of F equal the
values of E except at the points where the discontinuity occurs. At these
points, F equals -1/2, while the corresponding value of E equals +l/2. The
values of C shown in table III correspond to the 2's complement of the x
values. It will be observed that the values of F are identical in terms of
C +to the negative values of E, Consequently, it can be asserted that F in
terms of C is Jjust the negative of E:

F=-(C,Cp . . .CpM (9)

An example will help clarify these formulas. In this example the value of
y 1is .101, and the values of E and F are calculated for successive BRM
counter values that are notated by the subscripts on E and F:

59 oo (l(f B :i?i) <é> 50

E, 010 o) 0 1/2 1 -1/4
Ez | = | 110 = 1/8
Ey 001 1/2
Es 101 7/8
Eg 011 1/4
Eq 111 5/8
3 000 1/2 -1/4 -1/8 1 0

Fy 111 0 1/2 -1/4 <o -5/8
F, 01l 0 0 1/2 1 -1/4
Fz | =-| 101 = | -7/8
Fy 001 -1/2
Fg 110 -1/8
Fg 010 1/4
F, 100 -3/8

This example is shown in graphical form in figure 3 (p. 4).

When a BRM counter starts out with an arbitrary value, the starting value
must enter into the error formula as a parameter. These error formulas are
given explicitly by equations (10) and (11). In particular, these equations
reflect the maximum (denoted by G) and minimum (denoted by H) values of the
actual output at the points of discontinuities. In these formulations, x and
Xxg represent the value and the initial value of the counter, and C and Cg
represents the 2's complements of these values. The subscripts on those lite-
rals represent, as before, the stage of the BRM. In equation (1l), xgr identi-
fies the rightmost (i.e., lowest order) counter bit, whose value is 1; for
example, for the counter value 100, xXgry.R = ¥.3, for counter value Oll,
XgRY-R = Y., ete:



G =(x7 - Xg1,%p -~ Xgp » » « X = Xgp)M} . (10)
J-n
Y1
Y.2
H = —XSRy_B - (Cl - CSl,CZ - CSZ « o ® Cn - Csn)M . (]—’L)
J-n

The following two examples illustrate equations (10) and (11) for y = .OL
and (xg7,%xg2) = (0,1) and are calculated for successive BRM counter values that
are notated by the subscripts on G and H:

Gy 0 0\ /1/2 -1/4\/0 0

¢\ _ (1o | -1/4

gz = \o-1)\o 1/2/\1/ T\ -1/
1-1

Gz -3/4
Hy -1 0 0 <1/2 -1/4)(0) -1
Hy -1 1-1\\0 1/2 \1 -1/4
Hy ] = \-1/ - |0-1 = \-1/2
Hz -1 10 -3/4

In these examples it will be noted that (x; - Xgi) may be O, 1, or -1.

MULTTIPLICATION ERROR BOUNDS

The maximum positive error and the minimum negative error for a n stage
BRM whose counter starts out with zero may be obtained by an analysis of equa-
tions (7) and (9), respectively. These values will then form a bound of the
deviation of the BRM from that of exact multiplication. This analysis is pre-
sented in appendix A. It is shown in that analysis that for an n-stage BRM
these values are:

Enax(n) =118+%+;_% (12)

7 _n_ (-1)%

F- = -
min(®) = "5 "5~ 5. om (15)

Equation (12) is plotted together with equation (13) in figure 4(a). As a
by-product of developing equations (12) and (13), the points where these values
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TABLE IV. - x AND y VAIUES FOR Eg,.

n|x7 « .« «x|y_g - « Yo7 e o o X Vo1 e o - Yo7 | Emax

2 11 11 11 11 3/4

3 101 101 111 111 7/8

4 1011 1101 1101 1011 17/16
5 10101 10101 11011 11011 39/32
6 101011 110101 110101 101011 89/64
7 1010101 1010101 1101011 1101011 199/128

TABLE V. - x AND y VALUES FOR Fp;.

n|X7 « o « X3 [ Va1 + Vo7 ||X7 « + « X [ Vog - - Yo7 Foin
2 o1 11 o1 11 -3/4
3 011 101 001 111 -7/8
4 0101 1101 0011 1011 -17/16
5 01011 10101 00101 11011 -39/32
6 010101 110101 001011 101011 -89/64
7 0101011 1010101 0010101 1101011 -199/128




TABIE VI. -~ x, Xxg, AND y VAIUES FOR Gp,y
n | Xgq s Kgy | X7 oo oo XEL Vg - v Vgl %Xg7 ¢+ ¢ - HFgy | Xy o - - X | Vg - Yo7| Cpax
2 oL 10 o1 00 11 11 3/4
3 001 110 011 010 101 101 9/8
4 0101 1010 0101 0010 1101 1011 23/16
5 00101 11010 01011 01010 10101 10101 57/32
6 010101 101010 010101 001010 110101 101011 135/64
7 0010101 1101010 0101011 0101010 1010101 1010101 313/128
TABLE VII. - x, xg, AND y VAILUES FOR Hp;,
n | Xg7 XSl X7 . ) _Xl Y1 - - - —y_7 Xg7 - "XSlﬁf7 <. X | ¥ - o - Yo7 Hpin
2 1 oL 11 11 oL 11 -3/2
3 101 011 101 111 00L 111 -7/4
4 1101 0011 lo11 1011 0101 1101 -17/8
5 10101 01011 10101 11011 00101 11011 -39/16
6 110101 001011 101011 101011 010101 110101 -89/32
7 1010101 0101011 | 1010101 1101011 0010101 1101011 |-199/64

occurred were found.

These points are tabulated for various BRM in tables IV

and V.

Appendix B presents an analysis of a BRM whose counter starts out with an
arbitrary value. The basis of this analysis is to use equation (10) to obtain
the maximum positive error and to use equation (11) to obtain the minimum nega-
tive error. For an n-stage BRM these values are

(-n)*
9 . 28

(14)

[$)}a)

Gmax(n) = % +

(-1)"

9 + gn-l (1)

O]~

-4
3

Hmin(n) ==

These values form a bound for the generated round-off error. Fortunately,
only two maximum and two minimum values may occur for a BRM (for n > 2), and
therefore one can expect better results than would be predicted by these values.
These values are plotted in figure 4(b) and are also presented together with the
points at which they occur in tables VI and VII.

The problem that has been considered in appendixes A and B and in this
section 1s illustrated in figure 5. The actual and desired outputs for a two-
and a three-stage BRM are plotted in these figures for all starting values. As
is illustrated, finding the multiplication error bounds by graphical means is
not trivial. The points labeled ZEpgx, Fmin, Gmax, and Hpin 1in these simple
cases agree with those predicted in appendixes A and B.

The error formulas arrived at in appendixes A and B can be arrived at di-
rectly by use of the exclusive OR operator. It was not used, however, because

10
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some of the intermediate results obtained in the appendixes are interesting in
their own right and would be bypassed by this alternate method of proof.

CONCLUSIONS

The BRM has been shown to achieve approximate multiplication. The error
has been defined as the difference between the actual output and y &Xx and is
formulated as a bilinear expression. This error is shown to be dependent on the
starting conditions of the BRM counter. The error formulas presented are ana-
lyzed in detail and explicit error bounds are given. These bounds are shown to
increase by approximately 1/6 of a quanta per stage when the BRM counter start-
ing value is zero, and by approximately 1/3 of a quanta per stage when the BRM
counter starting value is arbitrary.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, August 31, 1965.
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APPENDIX A

MULTTPLICATION ERROR BOUNDS (ZERO STARTING)

In this section the error equation of an n-stage BRM whose counter starts
with zerc will be analyzed with the objective of obtaining tight error bounds.
Nevertheless, some of the intermediate results that will be obtained in this
sectlon are interesting in their own right. Because this analysis is complex,
formal methods will be used in this analysis. The basic outline is to use
equation (7) to find the points where the maximum positive value is attained
and then evaluate the equation at these points. In a similar manner, equa-
tion (9) will be used to find the minimum negative value.

The analysis is begun by stating and proving Lemms A.l.

Temma A.l: A sufficient condition for E given by equation (7) to attain its
maximum value is that =x; = y_4-

Equation (7) may be rewritten as a bilinear expression so that the terms which
are dependent on either x3; or y_; are grouped together. The quantity A in
the resultant expression is Independent of either x5 or y_i:

1 1. (1 1 1
E(xj,y-1) = A+ 5 %Y. - 5 Xi<'2' Yai-1 t g V-iz toe o o on-1 y-n>

1 1 1 1

By direct evaluation, the value of this expression is as follows:

E(0,0) = A
1{1 1
E(1,0) = A - §<§ y-i-Lt e o T AT Y—n>
E(O,l) = A - %‘-<% X521 + . . . F zi-l X1> (AZ)

Moreover, for the specific case when 1 1is n, the value of equation (Al) is

E(0,0) = A
E(1,0) = A
1(1 1
E(0,1) = A - =(= ...t
(0,1) z(z *n-1 on-1 XJ)
1 1
B(1,1) = A + % - -2.% el st ST xl> (A3)

13



This Lemma is proved by observing that the value of E when x5y =y_; =0
is always greater than or equal to the value of E in both cases when xi # y-i
and that for the nth component the value of E 1is always greater when
Xy = ¥op = 1. Although it was not needed in the proof of this Lemma, it can be
similarly shown that this i1s also true for the first component.

Based on this Lemma, the maximum value of equation (7) will be obtained by
finding the maximum of the quadratic form expression:

Axp,%p « o o X)) = (Xq5% « + - xy) (A4)
Theorem A.l: TFor all values of the components x4,
QL,%0,%x3 + « « Xy) > Q(0,%0,Xz « . . Xp)
This theorem follows directly from the proof of ILemma A.l.
Theorem A.2: For all values of the components xj,
Q(Xl,x2 . e . xn_l,l) > Q(x7,%5 « « » Xp.71,0)
This theorem follows directly from the proof of Lemma A.l.
Theorem A.3: For all values of the components xj,
QL,%0,%5 « + « %5_7,1) = Q(L,%p,Xz « « . Xy 1,1)
where §£ is the complement of X4
The difference
QL,%p,%z + o . xn_l,l) - Q(l,;é,;é . Eh_l,l) =
g 1
%2 %2
(Lyxpg « + « Xp.1,1)M : - (L,Xp « « . Xpo1,1)M : (A5)
Xp-1 -1
1 1

may be written equivalently as

14




(Xz « o o X_rl_l)K . - (.}_C'z « o o —Xrl_l)K . (AG)
Xp-1 Fn-1
where
i1 1 1 i
2TF T : 2
i
i_i__1i_ 1
2T 2% n3 4
K =
101 1
E';'zn-iﬂ_
o X__: _ 31
0

Expanding equation (A6) and using the identity

XXy - XiX3 = Xj - Xj (A7)

to simplify the cross product terms give a typical term x4 as

o+ o -3

Since (xi + X3) =1, equation (A6) is independent of the xi variable, and the
contribution from this term is

1 1

on-i+l ~ 51 (A9)

Similarly the contribution to the difference expressed in equation (AB)
from the term involving =x,_ 547 1is

1 1

P R ) (A20)

Consequently, the contribution to the difference expressed by equation (A8) by
each element may be paired by the contribution from another element to cancel
each other out of the expression. If n is odd, the middle term cannot be
paired. But, since this is the (n + 1)/2 term, by equation (A9), its contribu-
tion is

15



1 1 _o
o(ntl)/2  o(ntl)/2

Therefore, the value of the difference shown by equation (A5) is equal to
zero. This implies that

Q(l,XZ - o o Xn_l,l) = Q(l,-}zz .« & ;c-n_.l,l)
Lemma A.2: For v = x0,x3 . . » X and a = 1,0,1,0 . . . 1,0
Q(1,v,0,a,1) > Q(1,v,1,a,1)

where v and a are the component by component complement of v and a,
respectively.

By Theorem A,3 it 1s noted that
Q(1,v,1,a,1) = Q(1,v,0,a,1)

Therefore, the difference between the two quadratic forms of the Lemma can be
expressed as

5 = Q(1,v,0,a,1) - Q(1,v,0,a,1) (A11)

Partitioning the M matrix of equation (A11l) so that M; and My are compat-
ible with the vectors glves © as

1
5 = (1,v,o,a,1)Ml<v>+ (l,V,O,a,l)MZG‘_)
0

1 —
- (1,¥,0,8,1)M <—> - (1,7,0,8,10M4 § (A12)
v al W(; v a 2(1)

But it will be noted that

1 1
(1,v,o,a,1)Ml<V> = (l,'v:,O,E,l)M](V)
0 0

5 = (l,V,O,a,l)MZGL_) - (1,7,0,5.‘,1)M2(i> (A13)

Therefore

It will now be proved by induction on the length of a that 5 > 0. It
may be immediately verified that & =0 for a of length zero. Assume that
&k > 0, where &y 1s the value of & when a is of length 2k. It will now

be verified that Bg+3 > O:

16
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-1/22k+2

3y

Xp
*3

1
X

Xi

0141
0142
1i+3

li+ok-1
Oji+2k

Litex+l
Ojtpk+2
LitoK+3
Litok+d

O1+2%

Li+ek+1
Llitok+2

21 /2i+2k+3

-1/22k+1

¥

1 /pitek+2
_1/21+2k+l

_1]22k+3
_1/22k+2
_1/22k+l
_1/22k

-1/8
§7

(A14)

The O's and 1's in equation (Al4) are subscripted to show their position
in the vector, and the vector itself is displayed as a column rather than a row
in order to show the correspondence between the terms that must be multiplied

to form the value.

Multiplying out the terms of equation (Al4) yields

Bktl = Bk * THE T SiveR+s -

But, by direct evaluation

1

1

1

o2k+4

i-2

2

J=0

g
2d

X

i-3

(A15)
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i-2

L I 1 2 __1
o2k+4 2j “1-d 22kt4 oi-1 22k+4 T 02k+3
30

Therefore, dy4y > O.

Lemma A.3: For v = Xp,Xz « » « X; end a =1,0,1,0. .. 1,0
Q(l,v,l,o,a,l) > Q(l,v,0,0,a,l)

where v and a are defined as in Lemma A.2.

Proceeding in a manner similar to Lemma A.2 shows by Theorem A.3 that
Q(1,v,0,0,a,1) = (1,v,1,1,a,1)

Therefore, the difference between the two quadratic forms of the Lemma can be
expressed as

5 = q(1,v,1,0,a,1) - Q(1,v,1,1,a,1) (A16)

Partitioning the M matrix of equation (A16) so that M; and Mé are
compatible with the vectors gives © in the form

1 0
5 = (1,?,1,o,a,1)M]<v> + (l,V,l,O,a,l)M2<a>
1 1

1 1
- (1,%7,1,1,5,1)M1<v> - (1,7,1,1,5,1)M2<§> (A17)
1 1

But expanding the first and third terms of equation (A17) shows that

1 1
(1,v,1,o,a,1)Ml<v> = (1,7,1,1,'5,1)Ml<'x‘7>
1 1
Therefore,
0 1
& = (1,¥,1,0,a,1)M(a } - (1,7,1,1,8,1)M| & (A18)
1 1

If B 1s used to denote the value of & when a 1is of length 2k 1t will
now be proved by induction on the length of a that

5 > L R o+ _L _Foq+...+_Lt T+ L >0 A9
R Sitk+l 2 pitekta (A19)
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Pirst, note that for a of length zero

1 (1/21%3 1 £1/21+2 1 ~1/p1#3
fz . .}_(2 . '}'c'z -1/21+2
%3 %3 X3
%= | . . - . . ol . (A20)
X1 -1/16 Xi -1/8 X3 -1/16
1341 -1/8 1341 -1/4 1341 -1/8
Oi+g -1/4 i+ 1/2 litz -1/4
1i+3 1/2 1i+3 0 1i+3 1/2
1l T 1l = 1 = 1
= = X: t — Xs + . —_— X t —=
o5 1 g Fi-l o1+l 2 gi+e
The notation used in equation (A20) is similar to that used in proving
Lemma A.2. Assume that & > O. It will now be shown that Bk+1 > O:
i {1/71+2K+5 {1 /pirekt4
%o 1/pi+2kt4 % g
}_(3 . X3 -
X -1/22k*6 % -1/22k15
Livg . li+a —1/22k 4
Oi+2
l .
- + it+3 -
O+l = Ot 0144
Litox+1
Oi+zk+2 . .
Li+ox+3 -1/8 -1/4
O3 +2K+4 -1/4 1/2
1i+2k+5 1/2 i+2k+5 0
1/p1*2k+5 (1 /21t2K+3
gz Xo .
X3 X3
X4 -l/22k+6 X4 —l/22k+4=
Li+a Li+1
Oi+2 -l/22k+4 liso ( A2l )
+ lisz . + Oi+3
Oi+4 lite
Livor+l Oj+or+1 .
Oj+px+2 Litok+e -1/4
Llitok+3 litvok+3 1/2

-1/4

Oitok+a
1/2

Li+ok+5

Multiplying equation (A21) gives
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_ 1= 1 = 1
ktl = Ok T TErs i T v v T JIeras *2 T piveRta (A22)

Using equation (A19) gives the right side of equation (A22) as

— 1= 1 1 -
> oEkes it e o o T OiieRl ¥2 Y pidekee T ks 1Tttt

1z 1 s 1 o4 1541

- - X . — —_—
S1t2Kt3 2 | Lit2ktd | oPkt5 T S1+2KtE © | pitektd

Theorem A.4: There exists a +v¥* such that for all v
Q(1,v*,0,a,1) > Q(1,v,x447,8,1)
where v and a are defined as before.

First, note that Q(1,v¥*¥,0,a,1) > Q(1,v,1,a,1) because, suppose it were false,
¥
then there would exist a v¥¥ gsuch that for all v

*
Q(1,v¥*,1,a,1) > Q(1,v,0,a,1)
But from Lemma A.2
_* *
Q(1,v**,0,a,1) > Q(1,v*¥,1,a,1)
Therefore, a contradiction exists. Moreover, note that
*%
Q(1,v**,0,a,1) > Q(1,v,0,a,1)

that is, there is a largest. Therefore, Theorem A.4 1s proved by choosing

-
either v¥* or v¥*¥ for v¥; that is, whichever makes Q(1,v¥,0,a,1) the
largest.

Theorem A.5: There exists a v¥ such that for all v
Q(1,v*,1,0,a,1) > Q(1,v,x447,0,8,1)

First, note that Q(1,v¥*,1,0,a,1) > Q(1,v,0,0,a,1) because, suppose it were

*
false, then there would exist a v** such that for all v
*
Q(1,v¥**,0,0,a,1) > Q(1,v,1,0,a,1)
But from Lemma A.3

—% *
Q(1,v**,1,0,a,1) > Q(1,v**,0,0,a,1)
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Therefore, a contradiction exists. Moreover, a vzg-z*e can be chosen so that
*%
Q(1,v**,0,0,a,1) > Q(1,v,0,0,a,1)
Therefore
Q(1,v*,1,0,a,1) > Q(1,v,xi+1,0,a,1)
Theorem A.6: There exists a v¥ such that for all v
Q(l,V*,O,l) Z Q(l,V,Xi+l,l)

First, note that there exists a v¥* such that Q(1,v**,0,1) > Q(1,v,1,1), be-
cause; suppose it were false, then there would exist a vi* such that for all v
Q(l,vi*,l,l) > q(1,v,0,1)

But by Theorem A.3
Q(1,v**,0,1) = Q(1,v¥*,1,1)

*%
Therefore, a contradiction exists. Moreover, a v¥¥ can be chosen such that

Q(1,v%%,0,1) > Q(1,v,0,1)
Therefore,
Q(1,v¥,0,1) > Q(1,v,x;47,1)
It will now be demonstrated by an example how these theorems can be used

to obtain the value of x so that the error is the maximum positive value.
Consider a seven-stage BRM. By Theorem A.,1 and Theorem A.2

Q(1,%5,%5,%,4,%5,%g,1) > Q% ,%Xp,Xz,%y,%5,Xg,%7)
by Theorem A.6
* % % ¥
Q(1,x3,x3,%4,%5,0,1) > Q(1,x2,%3,X4,%5,%6,1)
by Theorem A.5
Q(1,x5%,xE%,x5*,1,0,1 > Q(1,x5,x5,x5,xE,0,1)
by Theorem A.4

*

Q(l:xz Xz :O 1,0,1) > Q(1,x Z*,xé*,xé ,1,0,1)

by Theorem A.5

** * *
Q(1,x5%,1,0,1,0,1) > Q(1,x5*,x5*,0,1,0,1)
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by Theorem A.6
*3
(1,0,1,0,1,0,1) > Q(1,x¥*,1,0,1,0,1)

Putting these lnequalities together results in

Q(1,0,1,0,1,0,1) > Q(%y,X5,Xz,Xy,%5,XgsX7)
Moreover, by Theorem A.3

Q(1,1,0,1,0,1,1) > Q(xy,%,,Xg,%,, X5, Xgs %)

Using the theorems in the pattern illustrated by the example makes it

easy to verify that the maximum positive value will occur at the points shown

in table IV (p. 9).

The maximum positive value of the error may be expressed concisely as
follows: Let Ep,.(k) denote this value for a k-stage BRM. If k is odd,

11 _l/2k+2
Oz
13
Epox(kt2) = Epo (k) + . . (A23)
1, -1/8
Op -1/4
1o 1/2

Evaluating equation (A23) yields the difference equation

1 1
Fua(K¥2) = Bpox(k) + §<l ' zk+2> (a2t)
Solving equation (A24) for an n-stage BRM in terms of Ep,,(1) yields

Epax(n) = Bpay(l) - l4n_ _ 1
9 6 9.2

But Epax(l) = 1/2.

Therefore, the maximum positive error of an n-~stage BRM, where n is odd, is:

Epax(n)

-+

olB
]

7
— —_— (A25)
18 g . on

If k 4dis even,
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111

Epax(k + 2) = Bpgo(k) + | * 3 " 3 pkte

= Epoo (k) +

(A26)

Solving this difference equation for an n-stage BRM in terms of Epgx(2) and
then evaluating the resultant expression for E, . .(2) = 3/4 yield

7 1

Combining equations (A25) and (A27) gives a closed-form equation for the maxi-
mum positive error of an n-stage BRM:

n
— —
E n) - + 3 +

5 (A28)

max(

The minimum negative value for an n-stage BRM can be obtained by applying
equation (9). Comparing the form of equation (7) with equation (9) shows that
the previous results can be utilized with a slight modification. In particular,
the value of the minimum is equal to the negative of the maximum and occurs at
points that are the 2's complement of the maximum value. Consequently, the
minimum negative values will occur at the points shown in table V (p. 9).
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APPENDIX B

MULTIPLICATION ERROR BOUNDS (ARBITRARY STARTING)

The error formulas given by equations (10) and (11) express the multiplica-
tion error of a BRM whose counter starts with an arbitrary value. Equation
(10) is the error formula resulting when the maximum value of the actual output
is considered at the points of discontinuities. Equation (11) is the companion
equation resulting when the minimum value of the actual output is considered at
these points. In this section, these error formulas will be analyzed with the
objective of obtaining error bounds for a BRM with this added degree of freedom.
First, equation (10) is analyzed to obtain the maximum positive error of an
n-stage BRM.

It is convenient for this discussion to define a vector b so that

b_g y.1
b_p Y2
’ =M ) (B1)
-n Y.n

n
Theorem B.1l: For all x and X in equation (10), G < 2: |b_ Moreover,

, il
i=1
— n —
if Vo = % = Xgier G = 55: ib_i|, where X denotes the complement of Xge e
The elements of the vector defined by equation (Bl) are

- 1 1 1 1
ba=dva-(§refvs +2_ny'n>
1 1 1 1
bz =372 '<4y-3+§y-4+ s +2n-1y—n>
1 1 1 1
b == - = + = T oo e e P
-k ) Y-k <4: y—k-l 8 Y-k-2 21’1-k+l y-l’l)
_ 1
bn= % Yon

Since 1/2 > 1/4 + . . . + 1/29,
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b-k S o if y-k. =0
>0 if y, =1 (B2)

It is next noted that each element (x)x - xgx) may have only three possible
values; that is, 0,1, or -1l. This may be verified by direct computation:

Xk | ¥sk [ *x " ¥sk
0 0 0
0 1 -1
1 0 1
1 1 0 (B3)
Since |xx - xgk| < 1 then
n
G = (x - xgp)bg + (x5 = xgp)b_p + o o o+ (% - xg )b < 21 [Po_;| (B4)
1=

A sufficient condition for G +to attain the upper bound of equation (B4),
n
that is, ), |b_j|, is that
i=1

(% - xg) = -1 if b <O
= +1 if by >0 (B5)

Combining equations (B2), (B3), and (B5) results in

Yox | Pk | ¥k - Xox | ¥k | ¥sk

0 <0 -1 0 1
1 >0 +1 1 0]
_ n
Therefore, y_j = X = Xgi 1s a sufficient condition for G = 2: lb-il‘
i=1

As a consequence of Theorem B.l the maximum of G, denoted by Graxs 18

n
such that G, .. = max 2: Ib_- The procedure to be followed is to find the
Yy i=1

il -
n
value y where the maximum of ), |b_i]
i=1
function. In order to aid this analysis the notation b_i(y) is introduced,
where ¥y =y _i¥ 5 « o o y_, and b_i(y) denotes the value b for the vector

is attained and then evaluating this

~-i
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(y-15¥-2 - + » ¥p). For an n-stage BRM, all possible b_i(y) values may be
obtained by multiplying M with all possible values of y. This particular
matrix is called Bp.

i1 2 -+ 00+ -11 ) boy(1) bg(2) -+ o+ by(2R - 1)
o % -3 -Z—I}_—l 00 00 1 b(1) b)) v b2t - 1)
B, - ) . - ) : ) (B6)
% ':!; c1i- o0 1
o . 0 % 10+« +01+ 1 b_,(1) b_p(2) - - - b_p(2" - 1)
A few examples will help clarify equation (B6)
Two-stage BRM:
) 111
z z\[° t* 1 2 4
B, = =
2
1 1 1
0 > 1 0 1 5 0 5
Three-stage BRM:
101 1 L 131311
2 4 8 0001111 8 4 8 2 8 4 8
1 1 -1 11,2111
B5 = 0 s "z 0110011 = 7 5 7 0 7 5 7
1 1 1 1 1
0 0 5 1010101 5 0 5 0 5 0 5
Four-stage BRM:
(1 .2 .3 _4 .5 6 .7 1L 7 6 5 £ 35 2 1
16 16 16 16 16 16 16 2 16 16 16 16 16 16 16

L0 3 1 3 1 1 g

8 ¢4 &8 2z 8 4 8
B, =
4

11 1

° I z 7 ° 53
1 1
B, o 0 5 0
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Theorem B,2: For all values of vy, |b_i(y)| = |b_i(2n-y)|.

This result follows by induction on the number of stages k, It was shown as
an example for the k = 2 case, Assume it is true for the k =n - 1 case
Then the k =n case is

Sl .2 _21’1-1 -1 1 on-1 _ 1 . 1
on  on on 2 on on
0
Bn = Bn-l . Bn—l
0

where this case is partitioned to show its structure. This theorem is obviocusly
true for the first row. The b_;(y) element for the n - 1 case is now the
b_;-1(y) and the b_j_1(2R + y) elements of the n case; and the b_j(27 - y)
element of the n - 1 case is now the b_i.3(2"® - y) and the b_j.j(2n+2%-y)
elements of the B, case., By the induction hypothesis |b_l(y)| = |b_i(2n- v)
for the n - 1 case, Therefore, these elements for the nth  case yield

|b-1-1(¥)| = |p-1-2(2™L - ¥)] (B7)
and

|p-1-1(2"% - ¥)| = [boi-2(2" + ¥)] (B8)
Substituting u = 2R - y into equation (B8) gives

|bog1(w)] = |bogop (2™ - )|
which completes the proof.

Lemma B.l: There exists a y* 1in the domain
010.,.00<Ly*<0111l...11 so that

S 1o.a()] 2 % [ba()]
i

1l

This theorem states that Gpgyx 1s attained in the domain
010..,.00<Ly<011...11. As a result of Theorem B.2, the search
for a point where Gy, 1is attained can be immediately restricted to the y
domain 0<y<100...,00, Consider Bp for these values of y:
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-i' "-2—" s e » -i s s ;l:- e s e
21’1 21’1 4 2
1l
> 0
B =
n BL 0 BR 0
0] O . ..

-1/4 0 1
1/2 1 0
0 0 0

The vector ) results from the y vector 0 . The vector ¢ can
0 . 0
o)

O o

be immediately ruled out. The structure By, . Br in the preceding matrix

is Bj_3. Because of Theorem B.2, the absolute values of the elements in By,
are identical to the absolute values of the elements Br. Moreover, since the
elements of first row, that is, lb_l(y)l, increase as y increases, then for
-1/4
1/2
0
each column sum to the left of . there is a column sum to the right that

0
exceeds it. Therefore, Gpoy must lie to the right.

As a result of Theorem B.2 and Lemma B.,l, there must be at least two values
of y where Gp,y is attained. For an n-stage BRM, the y value corre-
sponding to Gpgx on the left of y = 1000 . . . 00 will be called L,; the
one on the right of y =100 . . . 00 will be called R,.

Lemma B.2: For an n-stage BRM
ORp.p £L,<011...11

This result follows from the proof of Lemma B.l. Since the first row; that is,
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b_l(y)|, is increasing, Gpax must lie between the right maximum of B,_; and
he rightmost value of Lemma B.l.

Lemma B.3: For an n-stage BRM
0100...0<In<01Ly >

Consider B, for the values of y of Lemma B.l; that is,
0100...0<y<011...1%

1 2P+ 22Paa 2

4 2n 2n 2

B | % 2*f-1 2n2-2 | o
n 2 zn-l 21’1—1

B2 .

(@]

The column by column sums of the absolute value of the elements of the
first two rows are

3z on-1 4 on-2 . 1 2on-1l 4 2n-2 _ 2
2 2 )
4 oh on

2 o e e

Therefore, this is a decreasing sequence. Since by Theorem B.2 and Lemma B.l,
B,_» attains a maximum for at least two values, then CGpax must lie between
the leftmost value of Lemma B.l and OlL,_s.

Theorem B.3: TFor an n-stage BRM
ORp_1 < Ly < Olly o
This theorem is the combination of Lemma B.2 and Lemma B.3.

Theorem B.4: R, and L, are unique and ORp_j = Ly = O0lLy.5. This theorem
follows immediately from the proofs of Lemma B.2 and Lemma B.3 by using the
principle of strong induction as the method of proof; that is, assume it is
true for k < n and prove for the case k = n. The values of y where G
is attained can be obtained by using Theorem B.4. These values are listed in
table VIII,

The BRM counter value and starting value corresponding to the y values
listed in table VIITI can be obtained by Theorem B.1l. These values are listed
in table VI (p. 10).

An equation for Gpgy as a function of n may be obtained by a procedure
similar to that used to obtain Epgx. In particular, if the pattern established
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TABLE VIII. - VALUES OF y WHERE G, IS ATTATNED
Oan-Z ORn-l Ly Rn
nlyq - -yl ¥1- V|V V-6 | V-1 y-6

1 1 1

2 o1 1

3 011 011 o011 101

4 0101 0101 0101 1011
5 01011 01011 01011 10101
6 010101 010101 010101 101011

in table VIII is used a difference equation may be written for n

difference equation may be written for n

these difference equations gives

Cpax(n) =

odd.

Combining the solutions of

Gmax as a function of n:

R o}
9 3

(-1)"
9 -« 21

Noting the similarity between the rightmost term of egquation (11) to that of
equation (10), establishes immediately a minimum error bound when the BRM

counter starts with an arbitrary value:

. 0 _n, (-1)7
Hyin(n) > - 5 ~ 3 T A (B10)

.

A tight error bound may be obtained as follows:
gives the equation for H in the form

Expanding equation (11)

H = -%qpy_g - [(cl - Cgq)b_q + (Cp = Cgp)bg *+ « « « + (Cp - CSn)b_n] (B11)
In the initial value of the BRM counter, xgg identifies the rightmost 1.

It may be simply argued that, if a binary number has a rightmost 1 in position

R, its 2's complement also has a 1 in that position and, moreover, has zeros

at all positions Jj, where J < R. Therefore, xgp = Cgg and CSj =0 for all

j < R. Eguation (Bll) may be expressed as

-H = CSRy_R + <¢lb—l + Czb_g + . . .+ CR-lb—R+J> +'(CR - CSR)b_R

+ [(CR-EL - CSR+l)b-R-l + .. . F (Cn - Csn)b_n] (B12)
or alternately as
-H = Cyb_y + Cgb.p + . . . + CRb.R + (Cr+1 - CgR+1)b-R-1
1 L
+ . e .t (Cn - Csn)b_n + Cggr 5 V-R + 7 Y-R-1 + .. .+ (B13)
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Therefore
S |Clb-ll + lCzb_zl + . e ot lCRb-RI + l(CR+l - CSR+l)b-R-l| 2 P

1 1

The upper bound of -H is attained when equality is attained in equa-
tion (Bl4). It can be demonstrated by an argument similar to that used in
Theorem B.l that the conditions for equality are

and

for all j >R

Therefore, equation (Bl4) may be written as

Cq C

Co Cl

Cxz _ _ 2
-0 = (Cl’CZ’CS o« . Cn)M' . - (0,0,0 « « + 0,CR+1,CR42 . . . Cn)M .

. Cn

Cn

L L
+ CSR(§ Cp + T Cryy * - - ) (B1s)

The last two terms in equation (Bl5) are always nonnegative. Moreover, the

sum of these two terms is nondecreasing as R decreases. Since by Theorem A.1l,
C1 =1 is a condition for maximizing the first term of equation (B15), it must
also be a condition for maximizing equation (B15) itself.

Equation (Bll) may be rewritten with this condition as follows:

Y.z

“H =y 3+ (Cy = Cgp,Cz = Cgz + - « Cp - Coq M . (B16)

Y-n

Therefore, the equation for Hpyi, can be immediately written as:

1. (-u)°
9 . 2n—l

Hpin(n) = -1 = Gpay(n-1) = ~%? -1

g (B17)

Based on this analysis Cgjy, xg1, C1, X1, and y.y are equal to 1 for
Hpine The remaining stages are determined to maximize G for an (n - 1)-stage
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TABLE IX. - C, y, AND Cg

WHERE

Hpiy IS ATTAINED
nly.a ¥-6| Ce Ci{Css * * * Cs1
2 1 11 o1
3 101 101 011
4 1011 1101 0011
5 10101 10101 01011
6 101011 110101 001011
niy IRAIRG C1{Cs6 ’ * * Cs1
2 11 11 01
3 111 111 001
4 1101 1011 0101
5 11011 11011 00101
6 110101 101011 010101
BRM. The values of y, C, and Cg, where Hpi, is attained, are listed in

The BRM counter value and the initial value for these Hyi, values
These values are tabulated

table IX.
are the 2's complement of the preceding numbers.
in table VII.
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